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Motivation

What if, like a fully-filled water tank, a nucleus will spill its
less bound nucleons when accelerated? Most probable
this could happen to neutrons since, contrary to protons,
they are not protected by a Coulomb barrier. In the
eventuality that the answer is "yes", we are dealing with a
new nuclear process and therefore its study should have
high priority.
We choose a simple framework: the independent particle
shell model without spin-orbit interaction. We solve the
time-dependent Schrödinger equation with a moving
mean-field of Woods-Saxon type. We study the evolution
of few single-neutron states around the Fermi level
during 10−21 sec of constant acceleration followed by
10−21 sec of constant velocity.
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2D-TDSE with moving potential

We consider a neutron in a moving nuclear potential that
has axial symmetry. It is represented by a wave function
solution of the Schrödinger equation

i~
∂Θ(ρ, z, t)

∂t
= H(ρ, z, t)Θ(ρ, z, t), (1)

where H is the single-particle Hamiltonian.

H = −
~

2

2m

[
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ρ

∂

∂ρ
+

∂2

∂ρ2
+

∂2

∂z2
−

Λ2

ρ2

]

+ V (ρ, z − α(t)).

α(t) describes the displacement of the potential in time
along the z axis. Λ is the projection of the orbital angular
momentum on the symmetry axis. For simplicity the
spin-orbit term is neglected.
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By the Liouville transformation Φ = ρ1/2Θ, the first
derivative with respect to ρ from H is removed, resulting
a simplified Hamiltonian H of the form:

H = −
~

2

2m

[

∂2

∂ρ2
+

∂2

∂z2
−

Λ2 − 1/4

ρ2

]

+ V (ρ, z − α(t)).

One arrives to the equation

i~
∂Φ(ρ, z, t)

∂t
= H(ρ, z, t)Φ(ρ, z, t). (2)

To solve this equation, a transformation of both the
variable and the function from the non-inertial to the
inertial system is very useful. It avoids an interpolation of
the potential between the grid points at each time step.
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Transformation from the fix to the moving frame

To introduce this transformation we will use the 1-D
TDSE:

i~
∂Φ(t, z)

∂t
= −

h2

2m

∂2Φ(t, z)

∂z2
+ V (z − α(t))Φ(t, z) (3)

We go in the nuclear frame by the following changes of
the variable z → q and of the function Φ → Ψ
(P. Rouchon, 2nd IFAC Workshop on Lagragian and
Hamiltonian Methods for Nonlinear Control, Seville,
2003)

q = z − α(t), Φ(t, z) = exp(u)Ψ(t, q) (4)

where

u = ib

(

zα̇ − αα̇ +
1

2

∫ t

0

α̇2(t′)dt′
)

.
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By taking b = m
~

, it can be shown that Eq.(3) will be
transformed in

i~
∂Ψ(t, q)

∂t
= −

h2

2m

∂2Ψ(t, q)

∂q2
+ V (q)Ψ(t, q) + mqα̈(t)Ψ(t, q).

(5)
To eliminate the linear term in q (which tends to ∞ as
q → ∞), a further function transformation is performed

Ψ(t, q) = exp

(

−i
λ

~

)

χ(t, q) (6)

with

λ(t, q) = qm

∫ t

0

α̈(t′)dt′ = qβ(t).
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Particular case: α(t) = 1

2
At2

α̇ = At, α̈ = A, λ = Bqt,B = qmA

u = ib

(

zAt −
1

3
A2t3

)

i~
∂χ(t, q)

∂t
= −

h2

2m

(

∂2χ(t, q)

∂q2
+

2

~i
Bt

∂χ(t, q)

∂q
−

1

~2
B2t2χ(t, q)

)

(7)

+V (q)χ(t, q).

The advantage of these transformations is that they lead
to equations in which the potential depends on a
time-independent variable, the dependence on α(t) being
transferred in the coefficients of Eqs.(5),(7).
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Numerical details

We solve numerically the equations (5) and (7). We work
with the variables ρ and q on a finite numerical grid:
[0,84]x[-256,256], dρ = dq =1/8 fm, dt=1/128 ×10−22 sec.
TDSE is solved by the Crank-Nicolson method. One
obtains a linear system which is solved by a routine
based on the Strong Implicit Procedure. C. R. Jesshope,
SIPSOL - suite of subprograms for the solution of the
linear equations arising from elliptic partial differential
equations,Comp. Phys. Commun. 17 (1979) 383.
As initial solutions (at t = 0) we consider eigenfunctions
of the original Hamiltonian.
As an example we take 236U , a constant acceleration
A=0.5 [1044fm/sec2] and study 3 neutron states around
the Fermi level. The constant velocity ν=5[1022fm/sec].
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Time evolution during and after acceleration

Eigenfunction Φ0
13

; eigenvalue -8.28 MeV
Nin is the norm inside the dotted sphere (V0/100).
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Eigenfunction Φ0
14

; eigenvalue -4.80 MeV .
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Eigenfunction Φ0
15

; eigenvalue -3.40 MeV
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Calculus of the average energy in the laboratory frame

〈Φ|H|Φ〉 = −
h2

2m

∫ ∫
(

Ψ∗
∂2Ψ

∂ρ2
+ Ψ∗

∂2Ψ

∂q2

)

dρdq (8)

+
h2

2m
b2α̇2

∫ ∫

|Ψ|2dρdq −
h2

2m
2ibα̇

∫ ∫

Ψ∗
∂Ψ

∂q
dρdq

+
h2

2m

(

Λ2 − 1/4
)

∫ ∫

1

ρ2
|Ψ|2dρdq +

∫ ∫

V (ρ, q)|Ψ|2dρdq

The 1st term is the average kinetic energy in the nuclear
frame. The 2nd term reduces to mα̇2/2; it is the extra
kinetic energy due to the velocity of the potential. The
3rd term reduces to α̇ < p > where < p > is the average
momentum in the nuclear frame. It represents the energy
the neutron gains due to the interaction with the moving
wall of the potential; equivalent to the "one-body"
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Discussions and Conclusions

A similar emission takes place during the slowing down
(A < 0) of a projectile when it approaches a target.
Among other effects, it will produce an increase of the
neutron-transfer cross section. The value chosen (A=0.5)
is larger than the acceleration during the Coulomb
repulsion of two equal fission fragments from 236U
separated by Dcm= 20 fm (A=0.13) but comparable with
that attained during the collision of two 236U nuclei at the
same distance of approach (A=0.52). However, the
acceleration produced in Coulomb interactions is not
constant (it depends on Dcm) and a high level cannot be
maintained for 10−21 sec. A dedicated study is necessary.
After more than a century since the nucleus was discove-
red, there are still new nuclear processes to be studied.
This demonstrates how rich and diverse our field is.
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